
Chapter 4

Implementing Land Surface Data
Assimilation

In this Chapter we describe in detail how the one-dimensional land-surface model of Chap-
ter 3 is used in a fully four-dimensional (space and time) data assimilation algorithm. We
also match the general estimation formulation of Chapter 2 with the variables of the hy-
drologic model.
A key assumption in the hydrologic model is to neglect lateral flow in the unsaturated

zone, which is reasonable for terrain with moderate relief and on the spatial scales under
consideration. The model domain thus breaks down into a collection of one-dimensional
vertical cells or pixels (Figure 4.1). The horizontal resolution of the land surface model
is determined by the availability of the micro-meteorologic data and of the land surface
parameters, such as land cover and soil texture maps, and by computational resources.
Since we aim to estimate the land surface states at this resolution, we refer to this scale as
the estimation pixels.
From a simulation perspective, the estimation pixels are uncoupled but for larger-scale

patterns of the inputs such as the meteorologic forcings as well as the land cover and soil
texture classes. Lateral unsaturated moisture and heat fluxes between different pixels are
neglected. When the model is incorporated into the data assimilation algorithm, however,
the pixels are also coupled through the statistics of the uncertain inputs. The model error,
representing for example errors in surface forcings, and the initial condition parameters in
different pixels are assumed to be random fields which are correlated over time and space.
The assimilation algorithm is therefore fully four-dimensional (space and time).
The horizontal resolution of the brightness images is solely determined by the sensor.

We call this scale the observation pixels. In the foreseeable future, the brightness images will
only be available at a resolution much lower than the resolution of the land surface model,
that is each observation pixel generally contains several estimation pixels. We therefore
need to develop the assimilation algorithm together with a general downscaling capability.

This Chapter is organized as follows. We first describe the model domain and the
spatial discretization (Section 4.1). Next, we define the state vector for the land surface
application (Section 4.2). The initial condition parameterization is explained in Section 4.3,
the state equation is defined in Section 4.4, and the model error terms are identified in
Section 4.5. Section 4.7 contains the definition of the assimilated data and the measurement
operator. We also present the general downscaling scheme, which is based on an appropriate
definition of the measurement operator. Next, Section 4.8 reviews the covariance models
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of the uncertain inputs that we use in the assimilation. After a brief discussion of how the
adjoint and the tangent-linear models are derived (Section 4.9), we conclude this Chapter
with a description of the temporal discretization of the model equations (Section 4.10).

4.1 Model Domain and Spatial Discretization

The model domain for the estimation of soil moisture and temperature consists of Nep ≡
Nx ·Ny vertical columns or estimation pixels (Figure 4.1). Typical scales for the size of the
estimation pixels are 1 . . . 10km. Each column has Nz vertical nodes for the saturation. The
vertical resolution is typically six layers (Nz = 7). Starting at the surface, the thickness
increases downwards (5cm, 10cm, 15cm, 15cm, 15cm, and 30cm). For the soil surface
temperature there is only one node per column, likewise for the canopy temperature, the
interception storage, the canopy air temperature, and the canopy vapor pressure.
In the unsaturated zone, horizontal moisture and heat fluxes over the scale of an esti-

mation pixel are insignificant compared to vertical fluxes. We therefore neglect horizontal
unsaturated fluxes, which makes the model very computationally efficient. Even though the
columns are uncoupled as far as lateral moisture and energy exchange is concerned, they are
in fact connected through horizontal correlations of the micro-meteorologic inputs and the
soil and vegetation parameters. Meteorologic and geologic processes generally vary over a
scale larger than the scale of an estimation pixel for soil moisture. Such correlations provide
the large scale patterns observed by remote sensing instruments. Within the data assimila-
tion algorithm, the estimation pixels are also coupled through the covariance structure of
the uncertain inputs (Section 4.8).

4.2 State Vector

The state variables for all pixels are collected into the state vectors X and Y (4.1). The
canopy temperature Tc, the vapor pressure ea and the temperature Ta in the canopy air
space, which are subject to algebraic equations, are concatenated into the state vector X.
Likewise, the saturationWg, the soil temperature Tg, and the interception water contentWc,
which obey ordinary differential equations, are collected in the vector Y . The superscript
in parentheses indicates the number of the estimation pixel.
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(4.1)

All temperatures are scaled with the reference temperature T0 = 273.15K. The vapor
pressure ea in the canopy air space is scaled with the water vapor pressure e20 = 23.4mb
at 20◦C. The interception storage is dimensionless, but needs to be scaled to be of order
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Figure 4.1: Schematic of the model grid with typical length scales. Note the huge ratio
of horizontal to vertical scales. In the unsaturated zone, vertical fluxes dominate. Lat-
eral unsaturated fluxes of moisture and energy are neglected (Section 4.1). Soil moisture
estimates are obtained on the 5km-scale of the estimation pixels (fine outline). Remotely
sensed brightness measurements are available on the 10km-scale of the observation pixels
(thick outline). The downscaling is achieved by including in the measurement operator the
computation of the average of the brightness temperature over an observation pixel. For
L-band brightness temperatures, the arithmetic average is appropriate [Drusch et al., 1999].
This average is then subtracted from the data to provide the data misfit. By respecting the
information contained in the fine-scale model inputs, the algorithm implicitly distributes
the innovation from the measurement over all estimation pixels within a given observation
pixel (Section 4.7).

77



one. This is done with (Wmax
c + γs), where W

max
c depends on the pixel (3.16) and γs is

a constant scaling factor. The saturation Wg is already dimensionless and on the order of
one. It does not require further scaling.

The time-dependent vector Y (t) is of length NY = Nx ·Ny · (Nz+2). The length of X(t)
is NX = Nx ·Ny · 3. Altogether, there are Nx ·Ny · (Nz + 5) states at every time step. For
a two-week period with 15min time steps, we need Nt ≈ 1300 time steps. Using Nx = 16,
Ny = 32, and Nz = 7, the total number of states is on the order of 10

7.

4.3 Initial Condition

In this Section, we match the land-surface variables to the initial condition parameterization
(2.1a).

4.3.1 Initial Saturation

The parameterization for the initial saturation Wg(t = 0) maps the entire profile of each
pixel onto a single uncertain parameter γg, the transformed total initial water storage, as
follows. First, we decompose the initial saturation profile of each pixel into the total initial
water storage in the column W store

g and the shape of the initial profile W shape
g , which is a

vector of length Nz.

Wgi(t = 0) =W
store
g ·W shape

gi (4.2)

The total initial water storage is defined as

W store
g =

Nz∑
i=1

∆̄iθsiWgi(t = 0) (4.3)

For a definition of the thickness around the nodes ∆̄ see (3.6). The shape of the initial
saturation can be derived from a hydrostatic profile or from the estimate at the final time
of a previous data assimilation interval.

Since the initial storage is a bounded variable, the probability distribution of its er-
ror cannot conceivably be Gaussian. We therefore introduce a transform which maps the
bounded variable onto the entire real axis. This transform is also an elegant way of telling
the estimator that the storage is bounded, which greatly improves the estimator’s conver-
gence behavior. We map the initial storage W store

g with the transform

γg(W
store
g ) = tan

[
π

(
W store
g −W store

g,min

W store
g,max −W

store
g,min

− 0.5

)]
(4.4)

onto a transformed initial storage γg varying over the entire real axis. The parametersW
store
g,min

and W store
g,max can be derived from (4.3). In practice, however, it is advisable to treat W

store
g,min

and W store
g,max as empirical parameters and to constrain the initial condition parameter W

store
g

well within its physically possible limits. Starting a simulation at very low or very high
initial saturations can entail serious numerical problems in the forward model.
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4.3.2 Initial Soil Temperature and Interception Storage

The initial condition for the scaled soil temperature Tg/T0 can be used directly. There is
no need for a nonlinear transform.

Similar to the saturation, the initial interception storage must be transformed onto the
entire real axis. We use the transform

γc(Wc) = tan

[
π

γ′s

(
Wc(t = 0)

Wmax
c + γs

− 0.5

)]
(4.5)

Both γs and γ
′
s are constant scaling factors.

4.3.3 Initial Condition Parameterization

The complete initial condition parameterization reads
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(4.6)

The superscript in parentheses again indicates the number of the estimation pixel.

4.4 State Equation

Like the state vector, the state equation is a collection of equations from each pixel. The
exact notation follows easily from the definition of the state vector (4.1).

The state equation for X is given by a collection of mass and energy balance equations
from each pixel. In particular, the energy balance for the canopy (3.13) yields Tc, the water
mass balance equation for the canopy air space (3.19) yields ea, and the energy balance for
the canopy air space (3.18) yields Ta. For a one-pixel problem, we define

φ1 = (R
net
cs +R

net
cl − LEct − LEce −Hc)/fc

φ2 = LEa − LEg − LEct − LEce

φ3 = Ha −Hc −Hg

(4.7)

The notation for multi-pixel problems follows immediately from (4.1). Note that the canopy
energy balance in φ1 is divided by the fractional vegetation cover. This is important to get
proper scaling of φ for varying vegetation densities. The mass and energy balance equations
are implicit and are solved for the states with a Newton-Raphson method [Press et al., 1992].

The state equation for Y is the collection of the discretized version of Richards’ equa-
tion (3.1), the force-restore equation (3.7), and the interception equation (3.15) for each
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estimation pixel. For a one-pixel problem, we define

ϕi =

 Nz∑
j=1

Aijψj + bj

 /∆̄i/θsi for 1 ≤ i ≤ Nz

ϕNz+1 = Γg
[
Γ′gGg/Cg − (Tg − Td)

]
/T0

ϕNz+2 = (Pi − Ece/ρw −Dc)/(W
max
c + γs)

(4.8)

Again, the notation for multi-pixel problems follows immediately from (4.1). The matrix A
and the vector b in the definition of ϕi, (1 ≤ i ≤ Nz) follow from the discretization of
Richards’ equation according to the scheme by Celia et al. [1990] (see also [Simunek et al.,
1997]).

A =



d1 e1 0 . . . 0

e1 d2 e2
. . .

...

0
. . .

. . .
. . . 0

...
. . . eNz−2 dNz−1 eNz−1

0 . . . 0 eNz−1 dNz


(4.9)

d = −


0
e1
...

eNz−1

−


e1
...

eNz−1
0

 (4.10)

ei = (Kui +Ku,i+1)/(2∆i) for 1 ≤ i ≤ Nz − 1 (4.11)

b1 = −∆̄1Sg1 + (Ku1 +Ku2)/2 + qb

bi = −∆̄iSgi + (Ku,i+1 −Ku,i−1)/2 for 2 ≤ i ≤ Nz − 1

bNz = −∆̄NzSgNz − (Ku,Nz−1 +KuNz)/2− qt

(4.12)

4.5 Model Error

The model error or process noise accounts for errors in the model formulation, such as
simplistic parameterizations or unresolved processes. In addition, it also accounts for errors
in the micro-meteorologic forcings or incorrect parameter values.

In the general formulation of the estimation problem of Chapter 2, the model error is
written as an additive term. Likewise, the land-surface fluxes enter the hydrologic model
additively. It is therefore convenient to formulate the model error as uncertainties in the
physical fluxes such as the latent and sensible heat fluxes. This has the added benefit
that we can get a reasonable estimate of the magnitude of the model error. However, the
formulation of the model error as uncertainties in the land-surface fluxes does not necessarily
mean that the fluxes are the only source of uncertainty.
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Formulating the model error as uncertainties in the physical fluxes determines the scaling
factors Dν and Dω in the state equation (2.1). For a single pixel, we have Dν = INX , where
INX is the NX ×NX identity matrix, and

Dω(Y ) = diag
{
−1/∆̄1/θs1 . . .− 1/∆̄Nz/θsNz ΓgΓ

′
g/Cg(Y )/T0 1/(Wmax

c + γs)
}
(4.13)

where diag{·} stands for a diagonal matrix with the argument of diag{·} on the diagonal
and zeros elsewhere.
The projection matrices Pν and Pω in the state equation (2.1) are made up of ones

and zeros. They determine which fluxes are deemed uncertain. We usually restrict the
model error to affect only the fluxes at the land-surface boundary. For bare soil, this means
that only the flux into and out of the top node for soil moisture is uncertain. If there
is vegetation, the uncertain top flux boundary condition for the saturation more directly
affects all nodes that are connected to the surface by plants’ roots. Owing to the rather
shallow depth of the domain, all nodes are typically connected to the surface through the
vegetation.

4.6 Uncertain Parameters

Land-surface hydrologic models are heavily parameterized, and few, if any, of the parameters
are known accurately. The soil hydraulic parameters, for example, or the many parameters
of the Radiative Transfer model are prime candidates for parameter estimation. However,
estimating such parameters is no simple task. The parameter estimation problem is likely to
be very ill-posed, and the benefit of estimating soil hydraulic parameters in an operational
context is doubtful anyway.
At this point, we do not implement the parameter estimation in α. Our assumption is

that the parameters of the hydrologic model are already well calibrated when the model
is used in the data assimilation algorithm. Furthermore, we account for model deficiencies
with the model error terms. But note that we do treat the parameterized initial condition
as uncertain (Section 4.3).

4.7 Assimilated Data, Measurement Equation, and Down-

scaling

In this study, the only data assimilated into the hydrologic model are brightness tempera-
tures. We define the data vector as

Z =



T obsB1 (t
1)/T0
...

T obsBNop
(t1)/T0

. . . . . . . . . . . . . . . .
...

. . . . . . . . . . . . . . . .

T obsB1 (t
Nobst )/T0
...

T obsBNop
(tN

obs
t )/T0


(4.14)
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The first Nop entries correspond to the image taken at the observation time t
1, the next

Nop entries correspond to the image taken at the observation time t
2, etc. With a total of

Nobst images and Nop observation pixels within each image the number of measurements
is NZ = Nop · Nobst . Note that the observed brightness temperatures are scaled with the
reference temperature T0. Within the general framework of Chapter 2, it is straightforward
to assimilate other types of data, for example remotely sensed surface temperatures.

Soil moisture data assimilation can be formulated as a general downscaling problem.
Satellite observations of L-band brightness temperatures will likely be available at a scale
much larger than the scale of the micro-meteorologic, soil texture, and land cover data.
Over the continental United States, the latter data are typically available on scales of 1km
or less, whereas the projected resolution for a space-born passive L-band sensor is on the
order of 50km in the near future and possibly 10km in ten years.

Clearly, it is desirable to get soil moisture estimates at a scale finer than the resolu-
tion of the brightness images. In our formulation, the fine-scale micro-meteorologic, soil
texture, and land cover data constitute valuable information incorporated into the hydro-
logic model. We can use such fine-scale information to effectively downscale the brightness
images. By defining the measurement operator appropriately, this downscaling is easily
formulated within the assimilation algorithm. In essence, we run the hydrologic model on
the finer scale and define the measurement operator such that it maps the fine-scale model
predictions of brightness to the coarse scale of the remotely sensed brightness data.

As an example, Figure 4.1 shows the hydrologic model defined on a scale of 5km (esti-
mation pixels). By using the Radiative Transfer model (3.70) described in Section 3.2, we
can derive model predictions of the brightness temperature on the 5km-scale. In contrast,
brightness data are assumed to be available on a scale of 10km (observation pixel). In order
to compute the data misfit term Z−M [X,Y ], the data assimilation algorithm needs model
predictions of brightness temperature on the 10km-scale of the measurements. This is eas-
ily achieved by averaging the fine-scale brightness predictions over the observation pixels.
For L-band observations, the arithmetic average is appropriate [Drusch et al., 1999; Liou
et al., 1998]. In mathematical terms, we this can be summarized as

Mk[X,Y ] ≡
1

N

∑
ik

TBik(tk)/T0 (4.15)

The TBik(tk) are the predicted brightness temperatures at time tk of the N estimation pix-
els ik within the observation pixel corresponding to measurement k. We use the Radiative
Transfer model (3.70) on the scale of the estimation pixels to obtain the TBik . Like the
observations, the predicted brightness temperatures are scaled with the reference tempera-
ture T0.

In other words, with the measurement Zk we only supply to the algorithm the average
brightness temperature over the estimation pixels within the corresponding observation
pixel. But we also supply micro-meteorologic, soil texture, land cover, and other model
inputs on the finer scale of the estimation pixels, that is we tell the algorithm how the
estimation pixels behave relative to each other. Respecting such information through the
model physics, the algorithm is then able to distribute the coarse-scale brightness update
onto the finer scale estimation pixels accordingly. Note again that the downscaling procedure
is carried out implicitly within the algorithm. In summary, the downscaling scheme follows
naturally from an appropriate definition of the (forward) measurement operator.
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4.8 Error Covariances

In principle, the formulation of the variational data assimilation algorithm allows the use of
any covariance for the model and parameter errors. In practice, however, one is limited by
the computational effort required to store the covariance matrices and to solve the update
equations (2.16) and (2.17). Depending on the choice of covariance, the calculation of the
convolution integrals for the update is easily the most computationally demanding part of
the assimilation algorithm.
The computational burden of solving the update equations is greatly reduced by as-

suming stationarity for the error covariances. In this case, we can speed up the numerical
evaluation of the convolution integral significantly by using the Fast Fourier Transform
[Press et al., 1992]. Another technique to efficiently solve the convolution integral relies on
solving a corresponding differential equation [Bennett et al., 1997].
It is important to note that stationarity for the model error does not imply that the

fluxes themselves obey stationarity. For example, the moisture flux into the soil is the sum
of precipitation and evaporation. Precipitation in particular is certainly not stationary in
time or in space. But the stationarity assumption is only made for the error in the fluxes
and all other contributions to the model error. The fluxes themselves are not assumed to
be stationary.
We choose exponential correlation functions to model all covariances of the uncertain

inputs. The initial condition parameter covariance is

C
(i)(j)
ξ = σ2ξ exp

(
−

√
(x(i) − x(j))2 + (y(i) − y(j))2

lxyξ

)
(4.16)

where ξ represents the transformed initial soil moisture storage γg (4.4), the (scaled) ini-
tial soil temperature, or the transformed initial interception storage γc (4.5). The spatial
coordinates of estimation pixel (i) are denoted with x(i) and y(i), and lxyξ is the isotropic
horizontal correlation length. All cross-correlations between physically different components
of the uncertain parameters are assumed to vanish. For example, the error in the initial
storage is always uncorrelated with the error in the initial soil temperature, regardless of
the location.
For the model error, we assume that the covariance is separable in time and space.

Again, physically different components of the model error are assumed to be uncorrelated.
The same is assumed for saturation components belonging to different layers. For one
component, the model error covariance can be written as

C
(i)(j)
ξ (t, t′) = σ2ξ exp

(
−
|t− t′|

ltξ

)
exp

(
−

√
(x(i) − x(j))2 + (y(i) − y(j))2

lxyξ

)
(4.17)

where ξ represents for example the component of ν corresponding to the model error in the
canopy energy balance, or the component of ω corresponding to the error in the moisture
flux into and out of the top node for the saturation.
For ω, we also implemented a non-stationary model error covariance which is effectively

white in time.

C
(i)(j)
ξ (t, t′) = σ2ξ (t)δ(t− t

′) exp

(
−

√
(x(i) − x(j))2 + (y(i) − y(j))2

lxyξ

)
(4.18)
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The whiteness in time turns the convolution integral in the update equations into a simple
multiplication. The time-dependent variance σ2ξ (t) is meant to be zero most of the time,
and rather big at select times, for example at times of heavy precipitation. In this way
we can account for much larger errors during precipitation events without introducing too
much overall uncertainty. The approach is physically motivated by the fact that quanti-
tative precipitation measurements over large horizontal scales are usually quite uncertain
(Section 7.2). Alternatively, one can choose the assimilation window in such a way that the
initial condition is re-estimated after each major precipitation event (Section 7.1).

4.9 Tangent-linear and Adjoint Equations

Both the adjoint (backward) equation (2.15) and the tangent-linear (forward) model (2.18)
use derivatives of the forward operators with respect to the states. It is straightforward,
albeit laborious, to derive these adjoint operators from the definition of the states (4.1), the
initial condition parameterization (4.6), the forward operators (4.7) and (4.8), the scaling
factor Dω(Y ) (4.13), and the measurement operator (4.15). We consumed a lot of paper and
pencils and accomplished this task manually. Alternatively, automatic adjoint compilers are
available [Giering and Kaminski, 1998]. Since such tools have been developed only recently,
they are not yet easy to use.

4.10 Temporal Discretization

So far, time has been treated as a continuum. We must, however, also discretize the time
coordinate in order to implement the algorithm on a digital computer.
In the estimation algorithm, the nonlinearity of the forward model is resolved by it-

erating on the tangent-linear model (Section 2.2). This iteration is initialized with the
prior model trajectory. Therefore we need a good initial prior model trajectory to keep the
computational effort for the tangent-linear iteration at bay. For the initial prior fields, we
implemented a nonlinear solver which uses a Picard iteration to handle the nonlinearity and
a variable time step to deal with the intermittent nature of the forcings. The variable time
step scheme follows closely the one implemented in HYDRUS, a sophisticated model for
flow and transport in the unsaturated zone [Simunek et al., 1997]. The length of the time
step is governed by the number of iterations needed in the Picard iteration for the most
recent matric head. Moreover, the time step is reduced to seconds if there is precipitation.
In contrast, the tangent-linear model and the backward equation are implemented with

a fixed time step. This time step is determined by the frequency of the micro-meteorologic
inputs. Since the equations are linear and all the coefficient matrices are constant, we can
solve the system directly using a time-implicit scheme. We choose the time-implicit scheme
for its stability at longer time steps.
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Part II

Assessing the Performance of the
Assimilation Algorithm
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